网上投注-网上投注站怎么开

Conformal Prediction Intervals and Predictive Distributions保形預測區間與預測分布

時間:2024-10-15 08:56    來源:     閱讀:

光華講壇——社會名流與企業家論壇第6642

Conformal Prediction Intervals and Predictive Distributions保形預測區間與預測分布

主講人NIAID Jing Qin教授

主持人統計學院林華珍教授

時間:10月16日16:00-17:00

舉辦地點柳林校區弘遠樓408會議室

主辦單位:統計研究中心和統計學院 科研處

主講人簡介:

Dr. Jing Qin is a Mathematical Statistician at the Biostatistics Research Branch of the National Institute of Allergy and Infectious Diseases (NIAID). He earned his Ph.D. in 1992 from the University of Waterloo and subsequently became an Assistant Professor at the University of Maryland, College Park. Before joining the National Institutes of Health (NIH) in 2004, Dr. Qin spent five years at the Memorial Sloan-Kettering Cancer Center. His research interests encompass a wide range of topics, including empirical likelihood methods, case-control studies, various-biased sampling problems, econometrics, survival analysis, missing data, causal inference, genetic mixture models, generalized linear models, survey sampling, and microarray data analysis. Recently, Dr. Qin’s work has focused on conformal inference for quantifying uncertainty in machine learning. In 2006, he was elected a Fellow of the American Statistical Association. He is also the author of a 2017 monograph titled

Biased Sampling, Over-identified Parametric Problems, and Beyond (Springer, ICSA Book Series in Statistics).

Qin Jing,美國國家過敏和傳染病研究所(NIAID)生物統計研究部門的一名數理統計學家。他于1992年在滑鐵盧大學獲得博士學位,隨后成為馬里蘭大學帕克分校的助理教授。在2004年加入美國國立衛生研究院(NIH)之前,秦博士在紀念斯隆-凱特琳癌癥中心工作了五年。他的研究興趣涵蓋廣泛的主題,包括經驗似然方法、病例對照研究、各種有偏抽樣問題、計量經濟學、生存分析、缺失數據、因果推斷、遺傳混合模型、廣義線性模型、抽樣調查以及基因芯片數據分析。最近,秦博士的工作重點是用于量化機器學習中不確定性的保形推斷。2006年,他被選為美國統計協會(ASA)DE Fellow。2017年出版專著《Biased Sampling, Over-identified Parametric Problems, and Beyond》(Springer出版社)。

內容簡介

Conformal prediction (CP) is a machine learning framework for uncertainty quantification that produces statistically valid prediction regions (prediction intervals) for any underlying point predictor (whether statistical, machine, or deep learning) only assuming exchangeability of the data. Consider a scenario where we possess training data inclusive of both the feature variable X and the outcome Y . Simultaneously, we have test data that only includes the feature variable X. The objective is to construct a 95% confidence interval for the outcome Y in the test data. Lawless and Fredette (2005) addressed this challenge within parametric frameworks, employing a pivotal-based approach. Their method yields prediction intervals and predictive distributions with well-calibrated frequentist probability interpretations. However, as the dimension of the feature variable grows large, modeling the conditional distribution of Y jX becomes increasingly challenging. In this talk, we aim to extend their work by removing the parametric assumption for the predictive interval. Unfortunately, without making parametric assumptions about the conditional distribution of Y jX, obtaining an accurate estimation of conditional coverage becomes impossible. Instead, we will leverage the concept from the latest conformal inference (Vovk et al. 2005), which requires only accurate unconditional coverage. While the conformal predictive interval is inherently distribution-free, it is noteworthy that the choice of a robust working conditional model can significantly impact the resulting interval length. In essence, a well-designed conditional model contributes to the construction of shorter intervals, highlighting the practical importance of a thoughtful and effective modeling approach even in distribution-free settings. Furthermore, we will delve into the application of conformal predictive confidence intervals in more intricate scenarios. This includes situations where there is a covariate shift between training and test data, as well as cases where the outcome Y might be right-censored.

保形預測(Conformal prediction, CP)是一種用于不確定性量化的機器學習框架,它可以為任何底層點預測器(無論是統計學習、機器學習還是深度學習)生成具有統計有效性的預測區間(預測間隔),僅假設數據的可交換性。設想一種情景,擁有包括特征變量X和結果Y的訓練數據,同時還有僅包含特征變量X的測試數據。目標是為測試數據中的結果Y構建一個95%的置信區間。Lawless和Fredette(2005)在參數框架下解決了這一問題,采用基于樞軸的方式。該方法生成的預測區間和預測分布具有良好的頻率學概率解釋。然而,隨著特征變量維度的增加,對條件分布P(Y|X)進行建模變得愈發困難。

在本次討論中,主講人旨在通過移除預測區間的參數假設,來擴展他們的工作。然而,如果不對P(Y|X)的條件分布作出參數假設,就無法準確估計條件覆蓋率。取而代之的是,主講人將借鑒最新的保形推斷(Vovk等人,2005)的概念,該方法只需要精確的無條件覆蓋率。盡管保形預測區間本質上是分布無關的,但值得注意的是,選擇一個穩健的條件模型能夠顯著影響預測區間的長度。簡單來說,設計良好的條件模型有助于構建更短的預測區間,突出了即使在分布無關的設置中,精心且有效的建模方法仍然具有實際重要性。

此外,主講人還將探討在更復雜情境下保形預測置信區間的應用,包括訓練數據與測試數據之間存在協變量漂移的情況,以及結果Y可能被右刪失的情形。

西南財經大學  版權所有 [email protected]     蜀ICP備 05006386-1號      川公網安備51010502010087號
88百家乐现金网| 九州娱乐城| 大发888娱乐场and| 菲律宾百家乐官网的说法| 做生意门面对着什么方向好| 大发888线上投注| 百家乐玩法百科| 免费百家乐官网规则| 百家乐压钱技巧| 七胜百家乐官网娱乐城总统网上娱乐城大都会娱乐城赌场 | 澳门百家乐官网群官网| 法拉利百家乐的玩法技巧和规则| 百家乐官网最新的投注方法| 大发888pt| 百家乐书包| 大发8880| 百家乐游戏| 百家乐稳赢秘笈| 属龙人与属虎人做生意| 百家乐官网赌场破解| 浦北县| 大发888下载34| 速博百家乐的玩法技巧和规则| 百家乐玩法窍门| 伟博百家乐官网娱乐城| 百家乐官网打鱼秘籍| 澳门百家乐官网走势图| 百家乐官网怎样算大小| 真钱赌博| e世博官网| 大发888娱乐游戏注册| 大世界百家乐的玩法技巧和规则| 百家乐怎么计算概率| 百家乐官网倍投工具| 百家乐官网打揽法| 百家乐官网里靴是什么意识| 永兴县| 百家乐官网2号干扰| 遂昌县| 百家乐官网玩法及细则| 百家乐官网游戏必赢法|